
/,V -d,,/

NASA Contractor Report 198431
.... /j

An Object-Oriented Approach toWriting

Computational Electromagnetics Codes

Martin Zimmerman and Paul G. Mallasch

Analex Corporation
Brook Park, Ohio

March 1996

Prepared for
Lewis Research Center

Under Contract NAS3-25776

National Aeronautics and

Space Administration

An Object-Oriented Approach to Writing Computational

Electromagnetics Codes"

Martin Zimmerman and Paul G. Mallasch

Analex Corporation
Brook Park, Ohio 44142

Abstract

Presently, most computer software development in the Computational
Electromagnetics (CEM) community employs the structured programming paradigm,
particularly using the Fortran language. Other segments of the software community
began switching to an Object-Oriented Programming (OOP) paradigm in recent
years to help ease design and development of highly complex codes. This paper
examines design of a time-domain numerical analysis CEM code using the OOP
paradigm, comparing OOP code and structured programming code in terms of
software maintenance, portability, flexibility, and speed.

Introduction

CEM aspects make the task of writing numerical analysis quite challenging.

A great deal of work done in the Electromagnetics community in recent years
involves development of numerical algorithms to solve EM problems quickly and
accurately. The vast majority of existing CEM software written uses a
=conventional" design; the Fortran programming language and a structured
programming paradigm. Structured analysis and design concentrates more on
processing with much less emphasis on the data being processed. But a number of

These
include:

Parallelism;

Efficient memory usage;
Boundary conditions;

Multiple coordinate systems;
Hybrid methods using more than one numeric algorithm; and

Handling rectangular structured, conformal structured, and unstructured
grids.

Object-Oriented Programming (OOP) is a paradigm used to replace
structured programming for the production of very large, complex computer

programs. Object-oriented design contrasts conventional structured design by
formally connecting code and data in a single entity known as an object. Object-
oriented programming languages like C++ are rapidly gaining acceptance in many
software communities. In some areas of numerical analysis, such as Computational
Fluid Dynamics, object-oriented codes have made an appearance [1].

• This work was carried out at NASA Lewis Research Center under contract NAS3-25776.

How Do We Define Efficiency?

A goal of many programmers is efficient code. In the traditional programming
paradigm efficiency meant speed of execution, but a better metric might be life-cycle
costs of code. Besides execution time, life-cycle costs include time spent
developing application code, time spent maintaining it, and time spent setting up
any data files. Factoring money in, developers must know whether the end user is

willing to pay for additional speed or a "friendlier" interface, for example. Numerous
examples exist of situations where a user may take days (or longer) to build a model
solved in hours on a modem supercomputer. Using the old metric, spending two
man-months modifying code to run 50% faster made sense. Using a life-cycle

metric this effort might not be cost effective. In addition, a life-cycle costs metric
infers that slower-executing code that is easier to maintain may be more efficient
than faster code that is difficult to maintain. This metric caused a move away from
assembly languages towards high-level languages for application programs. In
recent years, this same metric caused many software engineers to move from a
structured programming paradigm to an OOP paradigm.

What Is OOP?

OOP is a programming paradigm; a conceptual model of computer software
design using models organized around real-world concepts. The structured
programming paradigm models a microprocessor. A series of "machines" called
procedures or subroutines execute operations on data. In structured programming
data and functions are separate entities; passive data (operated upon) and active
functions.

In the real world the separation between data and function is not always
clear. For example, an engineer is a person with a name and address, but also with
skills that can be applied to a problem. An engineer is really a "thing" with both

attributes (data) and methods (functions). In an OOP paradigm, these =things" are
objects. Each discrete object has attributes and methods allowing it to accurately
represent a specific concept incorporating both data structure and behavior. In
OOP, data takes an active role because it knowswhat to do through its methods [2].

The OOP paradigm can be used to some extent in any language, even
structured ones like Fortran [3]. However, hybrid OOP languages like C++ and pure
OOP languages such as Smalltalk contain language constructs to allow binding

together object attributes and methods easily.

Encapsulation

There are three main concepts in OOP" encapsulation, inheritance, and
polymorphism. Encapsulation (also information hiding) involves packaging
attributes and methods of an object together. Encapsulation wraps data in a layer

of protective code, permitting access to data in an object only by the methods in that
object. An object type (in C++ a =class') defines specific attributes and methods
that an object possesses. When enforcing encapsulation, the outside world must

2

access values of an object's attributes through its methods. Pure OOP languages
require complete encapsulation while hybrid OOP languages let the programmer
decide the level of encapsulation. Encapsulation hides implementation details of a
high-level concept represented by an object from the outside world. The object
becomes a "black box," limiting the possibility of errors like overwriting important
data or applying functions incorrectly. A result is more maintainable and portable
apptication code.

Object methods or services separate into several types. Use a constructor to
create an object, similar to declaring a variable. A constructor allocates memory
required for an object while creating the object, which can be at any point in the
code. A destructor deletes an object, freeing up allocated memory and is normally

called automatically when objects go out of scope. For example, an object created
in a loop goes out of scope upon exiting the loop where a destructor deletes it. This
dynamic memory allocation and deallocation makes memory management easier in
C++ than it is in Fortran. Another service is the accessor, used by foreign objects to
access data values inside an object. Accessors allow an object creator to give
specific read or write permission to each object attribute. Many objects also contain
utility services like a print method, for example. Instead of calling an external
function that outputs an object's attributes, an object invokes a service causing the
object to print itself.

Inheritance

OOP languages allow sharing of attributes and services among classes
based on a hierarchical relationship. C++ uses the terms "base class" and
"subclass." Inheritance permits a "child" subclass to receive all of its parent's
attributes and methods. Usually the subclass represents a specialization of the

base or super class. The definition of a subclass needs only to include those
methods and attributes that are not part of the more generalized base class. In
addition, designers may redefine subclass methods that are different from the super
class. Services that do not change in the subclass definition are already
automatically available.

Inheritance is a powerful property for code reuse. Carefully designed objects
may be used over again in new applications, either as is, or as a base class for a
new specialized object. Inheritance also allows hierarchical distribution of a
complex concept across a number of classes. A good example in the present code
is the Feed Class, which represents the forcing function applied to the EM time-

domain boundary-value problem. The base Feed Class contains information
common to all forcing functions. The primary service is application of a time-
dependent source term to EM fields in a problem space. The time-dependent

source term (e.g., pulse or sinusoid) is an attribute, as is the definition of a forcing
function over a feed region. There are a number of specializations of the base
Feed Class. For example, weighting across the feed region is different for a coax
feed than for a rectangular waveguide. A plane-wave forcing function used in

3

scattered field formulation has very different implementation from fixed region feed
used in total field formulation. Subclass definitions contain these differences.

Polymorphism

Polymorphism means that the same named service may behave differently in
different contexts. Users work at a high-level, using object methods to accomplish

tasks without worrying about implementation details. If different forms of a single
method accomplish the same task, then polymorphic functionality is present. The
key to polymorphism is allowing run-time binding. Objects can invoke methods of
other objects without knowing the type _or class) of the other object. The C++
language uses virtual functions for this purpose. While a strongly typed language,
C++ uses base class pointers to point to a sub-class object. When invoking a
virtual function through a base class pointer, the base object does not call its

method, using instead the object method the pointer addresses. Polymorphism
builds upon the previous two concepts. Encapsulation ensures that the outside
world operates using an object method rather than working directly upon the object's
attributes. Inheritance allows subclasses containing the same methods to use

different implementations through polymorphism.

An example of polymorphism used in the present computer code is the
Parallel Class. Parallel Class handles the work of spawning child processes,

deciding which processes are neighbors, determining domain decomposition, and
handling interprocess communication. Implementation is a function of the message
passing library used (e.g., PVM or APPL), so a base Parallel Class can have
several sub-classes. Each subclass corresponding to a different message passing

library using library specific commands. For instance, a serial machine uses a
default Parallel Class whose methods do nothing.

Algorithmic Polymorphism

Hybrid method computer codes are by definition polymorphic. Each
implementation is capable of reaching the same result (accurate computation of EM
fields) using different algorithms. For the present work, the hybrid method utilizes
Finite Difference Time Domain (FDTD) and Finite Volume Time Domain (FVTD).
Both methods use fields discretized over cell grids. Both methods (in at least some
formulations) use similar processes (e.g., update E fields, step in time, update H

fields, step in time, apply boundary conditions, save output, repeat). FDTD is much
more memory efficient since it is not necessary to describe each cell individually.
FV'ID has the advantage of being applicable to unstructured grids as well as
structured grids. Each algorithm is represented by a subclass of the same base
class that contains the common methods (e.g., update E fields, etc.). An application

of a hybrid FDTD or FVTD method is a complex conformal object surrounded by a
regular grid containing the outer boundary radiating condition [4,5]. Using this
hybrid method also could solve a problem entirely with FDTD or FVTD. By
standardizing interfaces between regions using different algorithms, it is possible to
have communication between these regions.

4

One implementation method divides the problem space into subspaces; each

represented by an appropriate subclass object using either FDTD or FVTD. The
subspaces collect into an array or list that contains base class pointers to subspace
objects. Application code then traverses the list, invoking methods for each
subspace object in turn without knowing how the object accomplishes its task,

Data Parallelism

Both FDTD and FVTD lend themselves to data parallelism implemented as
domain decomposition. Hiding mechanics of domain decomposition allows each

process operating on a subset of problem space to behave as if it is working on an
entire problem. Application programmers and users also need to work on the entire

problem combined. In the present case, Field Class and Focus Class hierarchies
work together. Field Class contains discrete EM field data for the problem space.
The data set is amorphous, neither structured nor unstructured. Focus Class
provides framework for describing the ordering of Field Class data. An analogy is
that Field Class is tent fabric and Focus Class is a set of tent poles defining the
shape of the tent. Focus Object knows what subset of a Field Object to iterate over
and how to iterate over that subset. This subset also is a function of data

decomposition among processes. Focus Object takes position information listed
globally and converts it to process local information used to control iterations over
Field Classes (Figure 1). Since this algorithm implements structured and
unstructured grids in different ways, these grids need varying sub-classes of Focus
Class.

Physical Continuous Application
Reality EM Fields Code

.... -,I,-
Discrete Discrete Field
Problem EM Fields Classes
Space

Data block
on a process

Structured or
Unstructured
Grid Format

Focus
Classes

Figure 1 - Relationship Between Levels of Abstraction and the OOP Classes.

5

Both FDTD and FVTD use nearest neighbor information and therefore

require message passing of EM field information between processes. Focus Class
works in conjunction with Parallel Class for this task and Focus Object contains a
Parallel Object as an attribute. Parallel Object determines whether data must be

passed. If so, Focus Object loads a message with appropriate information and
sends it using member functions (methods) of its Parallel Object.

C++ dynamic memory allocation is very useful for data parallelism.
Dimensioning arrays to the correct size as a function of the number of processes
used. The software uses a minimum amount of memory without recompilation after

adjusting the number of processors. This is particularly important for people using
clusters of workstations that have load distributions that vary from day to day.

Boundary Conditions

Boundary conditions often represent one of the most difficult aspects of
numerical analysis programming. They frequently demand a small fraction of
execution time while comprising a large part of actual source code. The present

code represents boundary condition concepts by a class hierarchy. All boundary
conditions provide the same service; modification of fields in a subset of problem

space. In addition, they all use data that are primarily multiplicative constants
required by the boundary condition. Actual data and implementation vary in
different boundary conditions. Handle differences in implementation by creating
distinct sub-classes representing miscellaneous boundary conditions, such as first
order Mur or second order Liao.

One challenge of using boundary conditions is applying operations to only a

portion of EM fields in the problem space. Focus Object handles iteration for the
data set in Field Object and tracks the active region. This service also applies

forcing functions and material attributes (Figure 2). The boundary condition may
contain smaller Field Objects that cover only the boundary region. Focus Object
insures that mathematical operations on two Field Objects only occur if objects have

the same size active region.

6

Typical subregions in a gridded problem

Outer Process __._i_i_._-_: Feed Region
Boundary Boundary (Forcing Term

Figure 2 - Various subsets of the entire grid must be operated on during
numerical analysis.

Comparisons With A Structured Programming Code

Comparing the present C++ code to FDTD_ANT (a non-conformal structured-
grid FDTD program based upon the Luebbers and Kunz FDTDA code [6]), both
codes use the same FDTD formulation executing with either scattered field or total
field formulation. These codes are compared for development, maintenance,

flexibility, portability, memory efficiency, and speed efficiency. A version of
FDTD_ANT is parallelized for domain decomposition along any one of three
Cartesian axes. The C++ code may be domain decomposed along any combination
of three axes (including aIJ three at once).

Code Development

Writing object-oriented code often involves more design overhead than
writing a similar code in the structured programming paradigm. In Object-Oriented
Design (OOD) the problem domain must be divided into discrete, distinguishable

entities modeled by objects. The software engineer designs objects or a hierarchy
of objects and relationship between objects. In some cases, classes may already
exist containing some or all the necessary capabilities. Using existing classes as a
foundation for new classes is a hallmark of reusable software-reducing design,

coding, and testing costs by amortizing development over several designs. Code
reuse can simplify development by using classes already created and tested in

7

different applications. Code reuse is different from duplicating code or taking

portions of code from one file and copying it into another file. Reuse within an
application requires finding similarities and consolidating them using inheritance.
Practicing software rouse can mean developing and debugging less total code for a
new application with fewer opportunities for typographical and logic errors.

Code Maintenance

Code maintenance is a major issue in life-cycle costs since most CEM codes

are undergoing almost constant modification. The OOP paradigm specifically
addresses code maintenance in several ways. Encapsulation makes code more
modular, which helps prevent new code from affecting existing and unrelated code.
In addition, much less global data (including common blocks) exists in the present
software, making overwritten memory less likely. Additional code is usually simpler
to write. For example, iterator indices of Field Object are all encapsulated within

Focus Object and encapsulated within Field Object is Focus Object. Application
code using Field Objects contain no indices or =do-loops." Index-froe notation at the
application code level makes code easier to read and avoids potential for
typographical errors that often accompany nested =do-loops."

Flexibility

The OOP code is far more flexible due to polymorphism. Using class

hierarchies containing virtual functions and functors (functions that are really
objects and treated like data) simplifies writing hybrid method codes. In particular,

hybrid method codes do not appear to use multiple methods or algorithms. This
technique increased software versatility by adding new subclasses that define only
methods whose implementation has changed.

Portability

One clear portability advantage that emerged involved parallelization. The
Fortran code has both a serial version and a parallel version. Executing a parallel
version on a serial machine necessitates removing all message passing library calls

since that library is not installed. In the OOP paradigm, each computer type would
have a library containing the Parallel subclass relevant to the computer's
configuration. For instance, a serial machine would have a =stub" subclass that

would do nothing. Application code dealing only with the base Parallel Class
becomes completely portable. This portability applies easily to other classes, with
highly optimized algorithm kernels stored in class libraries that vary from machine to
machine. Application codes invoke methods in these libraries without knowing
implementation details.

Memory Efficiency

Fortran tends to be very memory inefficient due toU the lack of dynamic

memory allocation. This is a problem for parallel codes where the data set size is a

function of the number of processes running. The C language has dynamic memory

8

allocation through the malloc command, but an additional command must deallocate

memory. C++ goes a step further by automatically invoking destructors aiding
memory deallocation.

Speed Efficiency

While the project has not concentrated on execution speed, efficiency
remains an important issue. Originally, OOP code ran significantly slower than
structured Fortran code-a factor of 8.5:1. In reference [7], the authors compared
versions of a Computational Fluid Dynamics (CFD) code written in Fortran, C, and
C++. The first two codes used structured programming while the C++ code used
OOP. On a variety of computing platforms C code was faster than C++ code by a
factor of roughly 2. Fortran code was nearly equivalent to C code in speed. For
many numerical applications, a factor of 2:1 would be an acceptable loss in
execution efficiency. The work in [7] suggests that the present OOP code could
execute faster. Following modification, later runs produced an overall C++ to
Fortran ratio of 1.7:1. This includes a different (and slower) Boundary Condition
used by the C++ software. In main interior field update routines, the ratio is 1.3:1
(on an IBM RS6000/580).

Results

To date, OOP code has been written in C++, fully parallelized (3-dimensional
domain decomposition) using the PVM message passing library. The software uses
the FDTD algorithm on a structured grid with either PML or first order Mur boundary
conditions. Agreement with the FDTD_ANT code is good for sample problems, but
is not precise since the codes use different boundary conditions. At present the
unstructured grid classes remain a complicated source code problem. Adding an
FV-I'D solver resulted in complete algorithmic polymorphism, but the ensuing code
executed extremely slowly and requires further optimization.

References

[1] I. G. Angus and W. T. Thompkins, "Data storage, concurrency and portability: an
object oriented approach to fluid mechanics," The Fourth Conference on
Hypercubes, Concurrent Computers, and Applications, 1989.

[2] J. Dutemann, "Our object all sublime," PC Techniques, pp. 14-22, April/May
1990.

[3] K D. Wampler, =The object-oriented programming paradigm (OOPP) and Fortran
programs, = Computers in Physics, pp. 385-394, July/August 1990.

[4] K. S. Yee, J. S. Chen, and A. H. Chang, "Conformal finite difference time domain
(FDTD) with overlapping grids," IEEE Trans. Antennas Propagat., vol. 40, no. 9, pp.
1068-1075, Sept. 1992.

[5] K. S. Yee and J. S. Chen, "Conformal hybrid finite difference time domain and
finite volume time domain," IEEE Trans. Antennas Propagat., vol. 42, no. 10, pp.
1450-1455, Oct. 1994.

9

[6] J. H. Beggs, R. J. Luebbers, K. S. Kunz, and H. S. Langdon, "User's Manual for
three dimensional FDTD version A code for scattering from frequency-independent

dielectric materials," short course at the 8th Annual Review of Progress in Applied

Computational Electromagnetics, March 1992.

[7] I. G. Angus and J. L. Stolzy, =Experiences in converting an application from
Fortran to C++: Beyond f2c," Proceedings of the C++ at Work Conference, Nov.
1991.

10

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

put_i¢ reportingburden for this co[lectionOf informationis ecimatecl,to average 1 hourpet response, includingthe time lot reviewin_.instru_ionl .=ma;'chingexistingdata source=.,,
gathedng and maJntaJnir_lthe ..dataneed_, and cornpi_ing an.d.re',newlngthe collectk_,of irdormatton. _ n mgardingmm ouroen ImtlfltlllmOr arty OtheraspoDt(3(thS
¢oitectionof infotma_on, mcluoingsuggestlortsTotronuclngth=sourd4m,to WashingtonHeaoqua/lecsSef_¢o6, IJliNictorateiorlrffofmmlol_Uper_lons and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arington. VA 22202-4302, and to lhe Office of Management and Budget, Paperv,_k ReductKm _mject (0704-0188), Wuhlngto_, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1996 Final Con_actor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Object-Oriented Approach to Writing Computational Electromagnetics Codes

6. AUTHOR(S)

Martin Zimmerman and Paul G. Mallasch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Analex Corporation

2001 Aerospace Parkway
Brook Park, Ohio 44142

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-233-5A-5C

C-NAS3-25776

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10172

10. SPONSORING/MONITORING

AGENCY REPOFITNUMBER

NASA CR-198431

11. SUPPLEMENTARYNOTES

Project manager, Charles Raquet, Space Electronics Division, NASA Lewis Research Center, organization code 5640,

(216) 433-3471.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

This publication is available from the NASA Center for AeroSpace Information, (301) 621--0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the

structured programming paradigm, particularly using the Fortran language. Other segments of the software community

began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and develop-

ment of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the

OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability,

flexibility, and speed.

14. SUBJECT TERMS

Object oriented programming; Computational electromagnetic software simulation

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

12
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Presc¢i:ed by ANSI Sial. Z39-18
298-102

.. -o_53.

I (_ m =

Z .-L
o

_0

t-

